
Indian Journal of Advancd Research in Electrical, Electronics
 and Instumentation Engineering (IJAREEIE)

Vol.2.No.1 2014 pp 34-38.
available at: www.goniv.com
Paper Received :08-03-2014
Paper Accepted:22-03-2013

Paper Reviewed by: 1. R. Venkatakrishnan 2. R. Marimuthu
Editor : Prof. P.Muthukumar

goniv publications Page 34

WCET ANALYSIS ON REAL TIME EMBEDDED SYSTEMS FOR
MEMORY CONSTRAINS

Balachandar Jayapalan, Karthikeyan R,

Electronics and Communication Engineering
Arulmigu Meenakshi Amman College of Engg.

Thiruvannamalai, Tamil Nadu, India
balu26.2007@gmail.com, jaisanthini@gmail.com

ABSTRACT

The growing density of integration and the increasing percentage of system-on-chip memory occupied by

embedded programs have led to an increase in the expected amount of power consumption. In order to reduce the
integrity and iterations of the embedded programs the WCET has been implemented. In this paper, a compiler level
optimization, namely WCET-aware rescheduling register allocation, is proposed to achieve WCET minimization for
real-time embedded systems. The novelty of the proposed approach is that the effects of register allocation,
instruction scheduling, and cluster assignment on the quality of generated code are taken into account for WCET
minimization. These three compilation processes are integrated into a single phase to obtain a balanced result. By
monitoring the Worst Case Execution time we can reduce the clock cycles required by each instruction of the
program, which parallely increase the memory consumption based on both RAM and ROM memory in the
embedded system and also power consumption criteria.

1. INTRODUCTION
Embedded systems play an important role in

many areas of human life. Cell phones, PDAs, and
satellites are only few examples of devices with a
processor embedded in them. A large group of these
systems are portable battery powered devices that have
a limited source of energy. This makes the energy
consumption a prominent characteristic. Hence, energy
estimation during design phase of these applications
helps designers in optimizing the energy consumption
and the battery lifetime. Since software is responsible
for a large portion of the system energy consumption,
an accurate energy model is necessary for the system
energy optimization.

Instruction-level Parallelism (ILP) is a critical

technique used in computer architecture for processor
and compiler design. ILP can improve the program
execution performance by causing individual machine
operations to execute in parallel. There are two modes
of operation, sequential mode and parallelism mode.
Macros and Pointers are two important functions which

is used to estimate the memory size of RAM and ROM.
Macros is used for such as addresses and array where
the pointers are using without addresses that is
addresses are hold in this process. In this process to
avoid the worst case of execution (WCET).

To reduce WCET, a program is the maximal
time execution can ever exhibit. Since WCET is one of
the most important attributes of real-time systems,
compiler level optimization of a program P should be
conducted along the Worst-Case Execution Path. In
addition, considering the characteristics of the clustered
VLIW architecture, it is important to take into account
the phase ordering problem of register allocation,
scheduling and cluster assignment for WCET reduction
so that a program WCET can be minimized.

2. EXISTING SYSTEM

Embedded systems frequently have to meet
real-time constraints making them real-time systems.
Without knowledge about the worst-case timing of a
real-time application, designers tend to oversize
hardware in order to guarantee that timing constraints

WCET Analysis on Real Time Embedded Systems For Memory Constrains

goniv publications Page 35

are met. Knowing the worst-case execution time
(WCET) thus enables to use or to design a hardware
platform tailored towards the software resource
requirements like memory or clock rate. Thus,
production costs can be reduced heavily while still
guaranteeing the safeness of the real-time system.

Today, software development for embedded

systems relies on high-level languages like C, and
compilers. Modern compilers include a vast variety of
optimizations. However, they mostly aim at
minimizing e.g. average-case execution times (ACET).
The effect of optimizations on WCET is almost fully
unknown. Currently, the executable produced by the
compiler is manually fed into a WCET analyzer
computing timing information. Using this WCET data,
it can be seen whether real-time constraints are met. If
not, the code has to be tuned, compiled and optimized
again in another cycle of the design flow.

Hence, it is desirable to have a WCET-aware

compiler. An integrated WCET-aware compiler allows
to integrate and to apply optimizations for WCET
minimization. WCET data available within the
compiler can be used to determine the worst-case
execution path of a program. Specialized optimizations
could be applied only to these code portions to
minimize WCET aggressively.

3. PROPOSED SYSTEM
 The execution time of a program is largely
determined by its control flow. Here, control flow
means the execution order of instructions or basic
blocks, as represented by a program's control flow
graph. In typical programs, control flow is expressed
using constructs like e.g. loops or conditional branches.
The worst-case execution time (WCET) of
a computational task is the maximum length of time the
task could take to execute on a
specific hardware platform.

In general, static WCET analysis is

undecidable since it is undecidable to compute how
many times a general loop iterates. Since loop iteration
counts are crucial for a precise WCET analysis, and
since they cannot be computed for arbitrary loops in
general, loop iteration counts need to be specified by
the user of a WCET analyzer.

 Besides loops known from high-level
programming languages, any circle within a program's
control flow graph needs to be annotated manually by
the user. Any such user-provided annotations
specifying the control flow are usually called flow
facts.

 The performance of today's systems is not
constrained by the computing power of processors.
Instead, the memory subsystem forms a bottleneck
slowing down fast, modern processors. Particularly in
the domain of hard real-time systems, such a slowdown
is unacceptable. As a consequence, various
optimizations within WCC aim at efficiently exploiting
memory hierarchies by moving portions of a program's
code and data to fast memories
 Worst case execution time is typically used in
reliable real-time systems, where understanding the
worst case timing behaviour of software is important
for reliability or correct functional behaviour.

As an example, a computer system that

controls the behaviour of an engine in a vehicle might
need to respond to inputs within a specific amount of
time. One component that makes up the response time
is the time spent executing the software – hence if the
software worst case execution time can be determined,
then the designer of the system can use this with other
techniques such as schedulability analysis to ensure
that the system responds fast enough.

 While WCET is potentially applicable to many
real-time systems, in practice the an assurance of
WCET is mainly used by real-time systems that are
related to high reliability or safety. For example in
airborne software, some attention to software is required
by DO178B. The increasing use of software in
automotive systems is also driving the need to use
WCET analysis of software.

 Both of these techniques have limitations. End
to end measurements place a high burden on software
testing to achieve the longest path counting instructions
is only applicable to simple software and hardware. In
both cases a margin for error is often used to account
for untested code, hardware performance
approximations or mistakes. A margin of 20% is often
used, although there is very little justification used for
this figure, save for historical confidence.

 As software and hardware have increased in
complexity, it has driven the need for tool support.
Complexity is increasingly becoming an issue in both
static analysis and measurements. It is difficult to judge
how wide the error margin should be and how well
tested the software system is. System safety arguments
based on a high-water mark achieved during testing are
widely used, but become harder to justify as the
software and hardware are less predictable.

WCET Analysis on Real Time Embedded Systems For Memory Constrains

goniv publications Page 36

4. IMPLEMENTATION
Memory Hierarchy

To enable optimizations moving parts of a
program across memories, the information which is
usually available only to the linker in a conventional
compilation process needs to be provided already to the
WCC compiler itself. This is motivated by the fact that
the WCET analyzer integrated into WCC requires
detailed information about a program's memory layout.
The stand-alone implementation used a fully linked and
relocated binary executable providing the entire
memory layout with its binary image. Now that is used
as an integral part of the WCC compilation framework,
linking and memory layout of programs need to be
considered by the compiler.

Memory Allocation

Many architectures are equipped with fully
software-controllable secondary memories. These are
memories that are tightly integrated with the CPU to
achieve best possible performance. These scratchpad
memories (SPMs) can be accessed directly and are
therefore in general well-suited for optimizations
regarding energy consumption and execution times.

 For WCET-centric optimizations, a scratchpad
memory is ideal since the timing of such memories is
fully predictable. Within the WCC compiler, SPMs are
exploited for WCET minimization by placing assorted
parts of a program into a scratchpad memory

Memory Architecture Compilation
 During the recent years, the speed of
processing has been increasing significantly faster than
the speed of memories. Therefore, many high-
performance applications are typically constrained by
the speed of the memory system. This effect has been
called the memory wall the path toward higher
performances is blocked by the limited speed of
memories.

 Problems resulting from this fact can partially
be reduced by exploiting the principle of locality and
memory hierarchies. According to the principle of
locality, real applications do typically exhibit some
locality in the way in which they access memory.
Memory hierarchies contain small, fast memories as
well as larger, slower memories. Typically, caches are
used in such hierarchies. For embedded systems,
caches come with some disadvantages: their timing
behaviour is difficult to predict and may exhibit a large
variance. Also, caches are power-hungry. We proposed
using scratchpad memories. Such memories behave
like a kind of software-managed cache, replacing or
complementing the usual hardware-managed cache.

 In a more general context, we try to find
transformations of embedded software exploiting the
memory architecture in general. Toward this end, we
make the memory architecture visible to optimization
tools. These tools are then expected to modify the
software such that improvements in terms of average or
worst case execution times, energy consumption or
memory footprints are achieved. The vision is to enable
any software designer to optimize his/her software for
the memory architecture at hand

5. RESULTS ANALYSIS
Macros Programming
 A macro in computer science is a rule or
pattern that specifies how a certain input sequence
should be mapped to a replacement input sequence
according to a defined procedure. The mapping process
that instantiates a macro use into a specific sequence is
known as macro expansion. A facility for writing
macros may be provided as part of a software
application or as a part of a programming language. In
the former case, macros are used to make tasks using
the application less repetitive. In the latter case, they
are a tool that allows a programmer to enable code
reuse or even to design domain-specific languages.

 Macros are used to make a sequence of
computing instructions available to the programmer as
a single program statement, making the programming
task less tedious and less error-prone. Macros often
allow positional or keyword parameters that dictate
what the conditional assembler program generates and
have been used to create entire programs or program
suites according to such variables as operating system,
platform or other factors.

WCET Analysis on Real Time Embedded Systems For Memory Constrains

goniv publications Page 37

Figure . 1Pointers Programming

A pointer is a programming language data
type whose value refers directly to another value stored
elsewhere in the computer memory using its address.
For high-level programming languages, pointers
effectively take the place of general purpose registers
in low-level languages such as assembly language or
machine code, but may be in available memory. A
pointer references a location in memory, and obtaining
the value stored at that location is known as
dereferencing the pointer. A pointer is a simple, more
concrete implementation of the more abstract reference
data type. Several languages support some type of
pointer, although some have more restrictions on their
use than others. As an analogy, a page number in a
book's index could be considered a pointer to the
corresponding page dereferencing such a pointer would
be done by flipping to the page with the given page
number.

 Pointers to data significantly improve
performance for repetitive operations such as
traversing strings, lookup tables, control tables and tree
structures. In particular, it is often much cheaper in
time and space to copy and dereferences pointers than
it is to copy and access the data to which the pointers
point. Pointers are also used to hold the addresses of
entry points for called subroutines in procedural
programming and for run-time linking to dynamic link
libraries (DLLs). In object-oriented programming,
pointers to functions are used for binding methods,
often using what are called virtual method tables.

 While pointer has been used to refer to
references in general, it more properly applies to data
structures whose interface explicitly allows the pointer
to be manipulated as a memory address, as opposed to
a magic cookie or capability where this is not possible.
Because pointers allow both protected and unprotected
access to memory addresses, there are risks associated
with using them particularly in the latter case. Primitive
pointers are often stored in a format similar to an
integer however, attempting to dereference or look up a
pointer whose value was never a valid memory address
would cause a program to crash. To alleviate this
potential problem as a matter of type safety, pointers
are considered a separate type parameterized by the
type of data they point to even if the underlying
representation is an integer. Other measures may also
be taken. It can be faster and can incur less overhead,
both in data structures and in keeping the program
execution footprint down. It gives you much more raw
access, and this can be very helpful, clever, or
necessary. You can point to anywhere and treat it
pretty much as anything. Generally useful in the
context where we need a continuous memory
allocation. Using pointers dynamic allocation of
memory is achieved. Pointers basically hold the
address of a variable. they are mainly used as function
parameters to pass values of parameters as references
rather than values.

WCET Analysis on Real Time Embedded Systems For Memory Constrains

goniv publications Page 38

6. CONCLUSION
 This paper proposes a compiler level
optimization technique, namely WCET-aware re-
scheduling register allocation for WCET reduction on
real-time embedded systems with instruction level
parallelism. A processor that executes every instruction
one after the other i.e. a non-pipelined scalar
architecture may use processor resources inefficiently,
potentially leading to poor performance. The
performance can be improved by executing different
sub-steps of sequential instructions simultaneously this
is pipelining or even executing multiple instructions
entirely simultaneously as in superscalar architectures.
Further improvement can be achieved by executing
instructions in an order different from the order they
appear in the program.

FUTURE ENHANCEMENT
 By using macros and pointers programming
we achieve WCET minimization in compiler level
optimizations. The future work of this project is to
implementation in hardware by using scheduling and
compare normal programming and RTOS
programming to obtain the best result.

REFERENCES

[1]. Yazhi Huag, Liang Shi, Jianhua Li, Qingan
Li, and Chun Jason Xue “WCET-Aware Re-
Scheduling Register Allocation for Real-
Time Embedded Systems With Clustered
VLIW Architecture”, IEEE transactions on
Very Large Scale Integration Systems.

[2]. D. Sciuto, C. Silvano and V.Zaccaria(2012),

“An Instruction-Level Energy Model for
Embedded VLIW Architectures”, IEEE
Transcations.

[3]. G. Callou, P. Maciel, E. Tavares, E. Andrade,

B. Nogueira, C. Araujo, and P. Cunha(2011),
“Energy Consumption Estimation in
Embedded Systems”

[4]. H. Falk. “WCET-aware register allocation

based on graph coloring,”in DAC ’09:
Proceedings of the 46th annual design
automation conference,2009, pp. 726–731.

[5]. “MAP1000 unfolds at equator,” in

Microprocessor Report, 1998.J. Fridman and
A. Greefield, “The TigerSharc DSP
architecture,” inIEEE Micro, 2000, pp. 66–76.

[6]. M. D. Smith, N. Ramsey, and G. Holloway,
“A generalized algorithm for graph-coloring
register allocation,” in PLDI ’04: Proceedings
of the ACM SIGPLAN 2004 conference on
programming language design and
implementation, 2004, pp. 277–288.

